AICon上海|与字节、阿里、腾讯等企业共同探索Agent 时代的落地应用 了解详情
写点什么

Nextdoor 分布式任务队列系统的演进

  • 2014-08-21
  • 本文字数:1637 字

    阅读完需:约 5 分钟

近日,私密社交网络 Nextdoor 在其官方博客发表了一篇文章,介绍其分布式任务队列系统的演进过程。该系统每天要处理数以百万计的异步任务,包括向数以百万计的邻居发送内容通知、创建搜索索引、以及其它应该从交互式Web 和移动应用程序解耦的耗时的处理过程。它由两部分组成:消息代理(队列)和一组任务工作进程。像其它许多系统一样,他们使用 RabbitMQ 作为消息代理,使用 Celery 作为任务工作进程。在公司规模较小的时候,这些开源项目提供了很大的帮助。但随着用户数的增多,不久前,他们在 Celery 的稳定性方面遇到了问题。即使得到了 Celery 创建者 Ask Solem 本人的支持,但他们仍然会遇到一些问题。最终,他们决定用他们自己开发的项目 Taskworker 替换 Celery。同时,为了减少运维开销,他们用 Amazon SQS 替换了 RabbitMQ。他们的理由是,Amazon SQS 容易理解,具有高可扩展性,而且完全由 Amazon 管理。

文章首先列出了他们在使用 Celery 时面临的三个主要问题:

  1. Celery 工作进程在他们系统的现有规模下不稳定。工作进程经常莫名其妙地宕掉,而且由于其代码库很复杂,很难进行故障排除。
  2. Celery 工作进程无法有效利用系统的计算资源。由于 Celery 不支持优先级队列,所以许多工作进程节点要么未充分利用,要么出现了过载。
  3. Celery 工作进程处理任务的延时经常非常高。

由于上述问题的存在,他们为 Taskworker 设定了三个目标:

  1. 简单:故障排除要简单。
  2. 高效:计算资源的利用要尽可能的高效。
  3. 可扩展:系统应该是完全分布式的,并可横向扩展。

文章接下来详细介绍了 Taskworker 设计及应用到生产环境过程中的一些关键点。

设计决策

基于上述三个目标,他们提出了一种很简单的设计,用 Python 伪代码表示(不包括错误处理和重试逻辑)如下:

复制代码
def run_taskworker():
while True:
queue = select_queue()
tasks = queue.get_tasks()
for task in tasks:
task.run()

在底层,他们会在每个工作进程节点上运行一组 Taskworker 进程,每个进程都运行上面所示的循环。所有进程都是完全独立的。select_queue()函数根据队列的优先级决定从哪个队列获取任务。它既要能优先处理高优先级队列的任务,又要能避免低优先级队列挨饿。

在通过模拟生产负载进行了十多次基准测试后,他们最终选用了一个彩票算法的变体,如下所示:

复制代码
def select_queue():
candidate_queues = get_all_queues()
while not candidate_queues.empty():
queue = run_lottery(candidate_queues)
if queue.empty():
candidate_queues.remove(queue)
else:
return queue
return run_lottery(get_all_queues())

文中还提到,他们要管理十几个或更多不同种类的队列,每个队列包含的任务具有相同的优先级和相似的运行时间。他们在队列层面进行配置设定,包括优先级、SQS 可见性超时以及一次任务处理循环获取的任务数。另外,SQS 在向工作进程发送任务时遵循“至少一次”的语义,这就需要任务必须是幂等的。

应用到生产环境

在这一部分,文章介绍了以下三个方面:

  1. 发布过程:为了保持兼容,SQS 队列和 Taskworker 的版本总是相同。
  2. 能力计划:他们使用 Taskworker 模拟生产负载,以决定在一天中的不同时段如何设置工作进程的能力。
  3. 任务迁移:他们基于每个任务增加了自己开发的开关功能,用于决定是将任务发布到 RabbitMQ 还是 SQS。当开始迁移的时候,他们只需要简单地、一个任务接一个任务地开启开关功能。

结论

截止博文发表时,Taskworker 已经在生产环境中运行了三个多月。他们没有再遇到稳定性问题。在运行相同数量的工作进程节点的情况下, Celery 系统队列中的任务忙时平均延时是 Taskworker 系统的 40 倍。

文章最后指出,Taskworker 还有许多可以改进的地方,而且正在准备开源。


感谢郭蕾对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ )或者腾讯微博( @InfoQ )关注我们,并与我们的编辑和其他读者朋友交流。

2014-08-21 08:292747
用户头像

发布了 256 篇内容, 共 91.0 次阅读, 收获喜欢 12 次。

关注

评论

发布
暂无评论
发现更多内容

怎样做一个知识库网站

小炮

知识库 SaaS平台

网络安全Kali之基于SSH、FTP协议收集信息

学神来啦

国家产业政策不断加码,氢能步入加速发展期

易观分析

氢能源 氢能源产业

Java AOT之GraalVM native image介绍以及简单长连接服务实践

BUG侦探

GraalVM java aot native image

TDesign React Starter 发布

TDesign

【百度智能云X英伟达】直播实录|GPU云产品体系介绍和应用场景分享

百度开发者中心

虎符交易所APP产品UI全新升级 让用户体验更流畅

区块链前沿News

虎符交易所

拜托,不用记密码真的超酷好吗?

蚂蚁集团移动开发平台 mPaaS

小程序 移动开发 mPaaS

云原生小课堂|Envoy请求流程源码解析(三):请求解析

York

云原生 网络 envoy Service Mesh (ASM)

Windows、Linux、Apple三大操作系统的主流文件系统包含哪些?

Ethereal

错误码设计思考

木小风

Java 架构 错误码

拆分电商系统为微服务

孙强

架构师实战营

【百度智能云X英伟达】直播实录|超大规模AI异构计算集群的设计和优化

百度开发者中心

Ansible:实战笔记

NChunHisenG.🐰

ansible

什么是数据恢复?数据丢失的最常见原因有哪些?

Ethereal

从建好到用好,阿里云原生微服务生态的演进

阿里巴巴云原生

弱监督语义分割:从图像级标注快进到像素级预测

网易云信

安全

4/8 Serverless 技术实践营成都站持续报名中

阿里巴巴云原生

让人秒懂的Redis的事件处理机制

Linux服务器开发

redis reactor epoll Linux服务器开发 Linux后台开发

什么是持续集成?如何基于Jenkins进行持续集成?

阿里云云效

云计算 阿里云 云原生 持续集成 CI/CD

ABAP 获取本地路径

Jasen Ye

abap 文件路径

信创背景下,J2PaaS低代码平台如何支持企业国产化?

J2PaaS低代码平台

信创 低代码平台 J2PaaS 企业国产化 J2PaaS低代码

延期通知 RocketMQ Summit 议题全揭秘

阿里巴巴云原生

提升客户服务体验的技巧

小炮

客户服务 SaaS平台

Apache ShardingSphere 5.1.0 执行引擎性能优化揭秘

SphereEx

数据库 ShardingSphere SphereEx apache 社区

国产版Postman

Liam

Java Jmeter Postman swagger Mock

【Python】此集合非彼集合

謓泽

3月月更

EMAS 移动推送发布uni-app插件

移动研发平台EMAS

ios 阿里云 Android端 开发与运维 移动推送

报名开启 | 3月30日,阿里云-索信达智能金融平台线上发布会

索信达控股

详细解读开源 PolarDB 三节点高可用的功能特性和关键技术

阿里云数据库开源

数据库 阿里云 开源 polarDB

【图解数据结构】排序全面总结(下)

知心宝贝

数据结构 算法 排序算法 3月月更

Nextdoor分布式任务队列系统的演进_语言 & 开发_马德奎_InfoQ精选文章