2天时间,聊今年最热的 Agent、上下文工程、AI 产品创新等话题。2025 年最后一场~ 了解详情
写点什么

Percolator:大数据集增量更新系统

  • 2010-10-24
  • 本文字数:1728 字

    阅读完需:约 6 分钟

随着需要收集和处理的数据规模以惊人的速率增长,曾经只有 Google 级别的系统才会遇到的可伸缩性需求变得更普遍,并常常需要专门的解决方案。Daniel Peng 和 Frank Dabek最近发表了一篇论文,介绍 Google 索引系统 Percolator 的技术细节。Percolator 目前运行在数千台服务器上,存储了数十 PB 的数据,并且每天要处理数十亿次的更新。

在抓取网页的同时进行索引更新,意味着在新文档不断加入时,需要对已有的总文档库进行持续地更新。这是通过小规模、独立的变换实现海量数据转换任务的一个典型范例。现有的技术基础平台恰恰不能胜任这样的任务:传统 DBMS 无法满足存储量和吞吐率的需求,而 MapReduce 和其它批处理系统无法逐个处理小规模更新,因为它们必须依赖于创建大量的批处理任务才能获得高效率。

Daniel 和 Frank 解释说,尽管索引的过程是一项批处理任务,可以通过一系列的 MapReduce 操作来表现。但每次重新爬完一些页面后要更新索引的时候,由于新增文档和已有文档之间存在链接引用的关系,只对增量部分运行 MapReduce 操作是远远不够的,实际上必须基于整个文档库进行 MacReduce 操作。事实上在 Percolator 出现之前,索引就是以上述的方式更新的。这样带来的主要问题就是由于要对整个文档库重新处理而产生的延迟。

解决此问题的关键是优化增量数据的处理方式。Percolator 的一个关键设计理念是:提供对库中文档的随机访问,以实现对单个文档的处理,从而避免了像 MapReduce 那样对文档全集进行处理。Percolator 通过“快照隔离”实现了遵从 ACID 的跨行及跨表事务,从而满足多线程在多台服务器上对文档库进行转换操作的需求。Percolator 还提供了“观察者(observer)”机制,在用户指定的列发生更新之后,这些观察者会被系统触发,以帮助开发者追踪计算过程所处的状态。

论文作者补充到:

Percolator 是专门针对处理增量更新而设计,但不是用于取代大多现有的数据处理解决方案。那些不能被拆分为单个微小更新的计算任务(比如对一个文件排序)仍然最好由 MapReduce 承担。

Percolator 更适合于在高一致性及在数据量和 CPU 等方面有很高需求的计算任务。对于 Google 来说,它的主要用途是将网页实时地添加到 Web 索引中。运用 Percolator,Google 可以在抓取网页文档的同时来对文档进行处理,从而将平均延迟降低为原来的百分之一,平均文档寿命(document age)降低 50%。

Percolator 建立于分布式存储系统 BigTable 之上。集群里的每台服务器上运行着三个可执行文件:worker, BigTable tablet 服务器 Google File System chunkserver 服务器

所有观察者都被关联到 Percolator worker 上,后者会对 BigTable 进行扫描,一旦发现更新过的列就会在 worker 进程中以函数调用的方式触发(“notification”)相应的观察者。观察者通过向 BigTable tablet 服务器发送读、写 RPC 请求来运行事务,继而触发后者向 GFS chunkserver 服务器发送读、写 RPC 请求。

Percolator 没有提供用于事务管理的中心服务器,也没有全局锁侦测器。因为 Percolator 不需要像运行 OLTP 任务的传统 DBMS 一样,对低延迟有很高要求,所以它采取了一种延迟的方式来清理锁,也因此在事务提交时造成了数十秒的延迟。

这种方法增加了事务冲突时的延迟,但保证了系统可以扩展到几千台服务器的规模……尽管增量数据处理在没有强事务的情况下也能进行,但事务使得开发者更容易地去分析系统的状态,并避免将错误引入到长时间运行的文档库中。

Percolator 的架构可以在普通廉价服务器集群上线性扩展多个数量级。在性能方面,Percolator 处于 MapReduce 和 DBMS 之间。和 DBMS 相比,在处理同样数量的数据情况下,Percolator 由于其分布式架构,资源消耗远大于 DBMS,同时它还引入了约 30 倍的额外性能开支。和 MapReduce 相比,Percolator 可以以低很多的延迟来处理数据,同时需要额外的资源来支持随机查找。Percolator 自 2010 年 4 月开始为 Google web 搜索提供索引,它利用合理的额外资源消耗,获得了更低的延迟。

不知道读者们是否看见或者预见了对处理海量数据集的快速增长的需求了没有?前不久 Phil Wehlan 问了同样的问题,希望大家给他提供反馈。

查看英文原文: Percolator: a System for Incrementally Processing Updates to a Large Data Set

2010-10-24 20:009827

评论

发布
暂无评论
发现更多内容

共享电单车如何投放运营?流程介绍!

共享电单车厂家

共享电动车厂家 本铯智能电动车厂家 共享电动车投放 共享电单车运营

镭速传输:安全文件传输的意义

镭速

RocketMQ 在小米的多场景灾备实践案例

Apache RocketMQ

RocketMQ

基于WebGL智慧储能电站三维管理平台

2D3D前端可视化开发

物联网 数字孪生 智慧储能电站 微电网

AI女友同时和1000人谈恋爱,狂赚500万

引迈信息

人工智能 AI 低代码 JNPF

软件测试 | 编写单元测试用例

测吧(北京)科技有限公司

测试

AREX Agent 源码解读之全链路跟踪和 Mock 数据读写

AREX 中文社区

Java 测试

网易云商·七鱼智能客服自适应 ProtoStuff 数据库缓存实践

网易智企

Java 数据库 缓存

互联网用户之间如何传输大文件

镭速

MegEngine 使用小技巧:用 mperf 进行安卓 opencl 算子的 roofline 分析

MegEngineBot

深度学习 开源 MegEngine roofline

如何从命令行启动 CST 软件?

思茂信息

Unsafe Unlink:unlink利用

郑州埃文科技

漏洞

PAG动效框架源码笔记 (二)层级视图

olinone

ios 动效 andiod 特效

软件测试 | Django客户端测试

测吧(北京)科技有限公司

测试

忙碌的七个层次

宇宙之一粟

生活 工作

软件测试 | unittest单元测试框架

测吧(北京)科技有限公司

测试

火山引擎DataLeap数据调度实例的 DAG 优化方案 (二):功能设计

字节跳动数据平台

大数据平台 DAG DataLeap

构建新一代智慧园区移动应用以推动数字转型

FinFish

智慧城市 移动开发 智慧园区 小程序容器 小程序技术

APP和小程序共同塑造现代化政务服务

FinFish

小程序 小程序容器 小程序化 小程序技术 政务服务

住宅代理的未来:挑战、趋势和机遇

摘星星的猫

数据智能加持下,中小微企业告别“融资难”

华为云开发者联盟

云计算 后端 华为云 华为云开发者联盟 企业号 5 月 PK 榜

Dynamic Wallpaper Mac(视频动态壁纸) v14.3免激活

真大的脸盆

Mac Mac 软件 视频动态壁纸 高清动态壁纸

「AI之劫」:当机器超越人类底线,正在侵犯我们的创造力和道德

加入高科技仿生人

人工智能 低代码 AIGC

FCPX插件-手势点击滑动视频转场 Hand Gesture Transitions

真大的脸盆

Mac Mac 软件 fcpx插件 视频特效插件 转场效果插件

AIGC背后的技术分析 | 知识图谱

TiAmo

自然语言处理 机器学习 知识图谱 AIGC

热技术冷思考:AIGC为SaaS带来的不能只有盲目自信

ToB行业头条

小程序技术助力智慧家居生态互联

FinFish

智慧城市 小程序容器 智慧家居 小程序化 小程序技术

直播预告 | 博睿学院:智能告警与AIOps融合探索

博睿数据

根因分析 智能运维 智能告警 博睿数据 博睿学院

Percolator:大数据集增量更新系统_Google_Jean-Jacques Dubray_InfoQ精选文章