写点什么

关于“敏捷计划与估计的方法”的讨论

  • 2009-10-15
  • 本文字数:1544 字

    阅读完需:约 5 分钟

在做 Scrum 的迭代计划时,不同的团队有很多不同的做法。在敏捷中国讨论组中,对敏捷计划与估计的方法进行了激烈的讨论( Scrum sprint plan 中规模估算的做法调查关于 story point 的单位)。

克强罗列出有四种敏捷计划估计的方法:

  1. 假设 1 个 usre story point 需 1 个理想人天,Velocity 为理想人天 / 实际人天数
  2. 选择最小工作单元为 1 个 User story point,velocity 为 user story point 数量 / 理想人天数
  3. 选择最小的工作单元为 1 个 User story point,velocity 为 user story point 数量 / 实际人天数
  4. 使用 use case point 作为规模,velocity 为 use case point 数量 / 实际天数

首先讨论的焦点集中于对用于“故事点”的理解上。大家对“‘故事点’是没有单位的”形成共识。Xu Yi 首先指出:

user story 用于评估 user story 的相对大小(bigness),它并无一个可用于度量的单位值。一定程度上可以说 story point 最终会达到具有一定的单位效用。当某产品开发大团队(包括若干 scrum 团队)保持团队稳定,以及开发足够长时间后达到 velocity 稳定时,可以­借由建立一定程度上 story point 向“成本”、“时间”等度量的映射,使其成为“虚单位”。

Daniel Teng 也在博客中分析了在敏捷迭代计划中为什么使用“故事点”,以及为什么“故事点”是没有单位的(巧妙使用“故事点”进行敏捷估计)。使用“故事点”的好处包括:

  1. 使用相对估计
  2. 关注规模
  3. 忽略个人能力的不同
  4. 可以相加。

至于“故事点”的原因在于:

  1. “故事点”是一个相对量
  2. 不同团队的单位“故事点”是不同的,也很难统一。

接下来讨论集中于具体使用“理想人天”和“故事点”做迭代计划的具体方法上。姜志辉的团队的做法是:

我们采用的是 bob 的 dx 迭代 +Joel 的任务分配法。 应该说,原则来自于 bob,方法来自于 joel。

Andy 的做法是:

  1. 记录前面几个 sprint 的实际的可以利用的资源(以人天为单位) 和 实现功能的 IMD(Ideal Man Day),计算 资源利用率:实际完成功能的 IMD / 实际可利用的资源。 源利用率可以取多个 sprint 的平均值,也可取上个 sprint 的单点值。
  2. 即将开始的 Sprint 内可以利用的资源是可以首先计算的,乘以资源利用率 ,得到 本 sprint 的 IMD
  3. 按功能的优先级,本次 Sprint 要达到的目标,选择优先级最高的功能,分解为实现任务,并评估如何实现,不断评审优先级最高的一些功能,直至 Team 不能承诺成为止,也即是所选功能的累积 IMD 达到了 本 sprint 的 IMD。

而 Xu Yi 团队的做法是:

sprint planning 第一部分,团队选择有哪些 user story 是可以做掉的,过去的平均 velocity 只是作为参考而已。 sprint planning 第二部分,团队将选取的 user story 详细分割为 task,以小时为单位进行估计,而且和自己的 capacity 不断地进行对比,当 capacity 耗尽时停止。

接下来话题一转,大家集中到怎样计算每个迭代的速率 (Velocity) 上。Xu Yi 团队的做法很简单直接:

根据过去的 sprint 来统计,平均下来每个 sprint 完成的 story point 就是 velocity。比如前 5 个 sprint 分别完成 9、12、5、16、10,那么 team 的 velocity 就是(9+12+5+16+10)­/5=10.4。

很多人有不同的观点,Vincent Lee 认为:

而我说的算法是“用完成的任务点数除以实际投入的人日数”,假设前 5 个 sprint 分别完成 9、12、5、16、10 个 story point,实际投入的人日数分别为 20、20、25、25、20,(9+12+5+16+10)/(20+20+25+25+20)=0.47,利用这个数值­以及下一个 sprint 的可用资源(比如是 25),就可以算出下一个 sprint 可以完成的工作量:0.47*25=11.75 进一步的,由于可以乐观的认为团队熟练程度在提高,可以调高速度为 0.5,于是预计可以完成 0.5*25=12.5 的工作量。

看来不同团队对敏捷计划与估计的理解不尽相同,做法也各异。您的团队在迭代计划使用哪一种方法呢?

2009-10-15 02:022166

评论

发布
暂无评论
发现更多内容

12.1大数据技术发展史

张荣召

GaussDB(DWS)磁盘维护:vacuum full执行慢怎么办?

华为云开发者联盟

数据库 数据 DWS

架构探索:事务处理总结

而立斋

第八周课后练习

jizhi7

话题讨论 | 作为程序员你的业余爱好是什么呢?

小天同学

话题讨论 业余爱好

Eclipse Vert.x 4发布

dinstone

Java Reactive Vert.x

年轻程序员不讲武德,做表竟然拖拉拽

雯雯写代码

程序员

双十二好物推荐:「mPaaS 安全加固」带你看看别人家的应用

蚂蚁集团移动开发平台 mPaaS

安全 mPaaS 应用

英特尔唐炯:36.4% PC同比增长,预示了2021是个好年

E科讯

API研发效能提升实战

Geek_40a463

研发效能 API研发

阿里P8大佬带你全面了解—MySQL锁:03.InnoDB行锁

比伯

Java MySQL 编程 架构 程序人生

无可限量的数字经济

CECBC

数字经济

你心目中高级程序员的印象是什么样子的?

Java架构师迁哥

Java并发编程:任务执行器Executor接口

李尚智

Java并发

架构之书:传道与《设计模式》

lidaobing

架构 设计模式

区块链技术在旅游业中的应用探索

CECBC

旅游

学习笔记4

Qx

学习笔记-week12

张荣召

以太公约系统开发详情丨以太公约源码案例

系统开发咨询1357O98O718

以太公约系统开发介绍

架构探索:事务处理二

而立斋

shell脚本的使用该熟练起来了,你说呢?(篇四)

良知犹存

shell脚本编写

Python最会变魔术的魔术方法,我觉得是它!

Python猫

mongodb 源码实现系列 - mongodb详细表级操作及详细时延统计实现原理(快速定位表级时延抖动)

杨亚洲(专注MongoDB及高性能中间件)

数据库 mongodb 性能调优 源码刨析 分布式数据库mongodb

12.2分布式文件系统

张荣召

DolphinDB与Aliyun HybridDB for PostgreSQL在金融数据集上的比较

DolphinDB

postgresql 阿里云 时序数据库 DolphinDB 数据库开发

Java中CAS原理分析(volatile和synchronized浅析)

叫练

volatile 多线程 synchronized CAS JUC

架构探索:事务处理三

而立斋

第八周-总结

jizhi7

架构师训练营第 1 期 第 12 周作业

李循律

极客大学架构师训练营

第五周作业第1题

走走,停停……

排查指南 | 关于 mPaaS-iOS 小程序打不开问题的解决方案

蚂蚁集团移动开发平台 mPaaS

小程序 mPaaS

关于“敏捷计划与估计的方法”的讨论_研发效能_滕振宇_InfoQ精选文章