写点什么

Wolfram|Alpha,菱形六十面体背后的细节

  • 2009-05-25
  • 本文字数:1547 字

    阅读完需:约 5 分钟

Wolfram|Alpha 尝试用符号计算使世界上的系统知识变得可计算。它的输入不是一组方程,而是语言。该系统的主要部分包括一个数据整理(data curation)管道,一个算法计算系统、一个语言学处理系统,还有一个自动化的呈现系统。

Wolfram|Alpha 并不是那种返回已有网页的链接的搜索引擎,也不是像 Wikipedia 那样提供“大众化”知识叙述的海洋。它的目标是通过对提供给它的事实进行实时计算,去回答用户提出的问题。

Wolfram|Alpha 不靠搜索 Web 来找答案,它的源数据也并非来自 Web。它内部所用的数据经过整理和审核,大部分来自系统化的第一手来源。即使是实时数据(天气、股票、地震)也经过整理,并与有效数据作比较,如果发现偏差,就会特别标示出来(比如用虚线)。

Wolfram|Alpha 用了“超过 10T 的数据,超过 5 万种算法和模型,还具有超过 1 千个领域的语言学处理能力”。作为 Wolfram|Alpha 引擎基础的 Mathematica 引擎从 1986 年开始持续发展,现在已经有超过 5 百万行的符号代码,运行在世界排名第 66 位的超级计算机上,每天可处理 1.75 亿条请求。服务由 R Systems 提供,可以每秒执行 39.6T 条数学运算,细节如下:

据 Top500 网站和 Dell 一份关于此系统的案例研究( PDF )所说,系统名为 R Smarr ,有 4,608 个处理器核心,用了 576 台“Harpertown” Xeon 机器,共 65,536GB 内存,采用高速的 InfiniBand 数据传输连接。该系统同时使用了 Red Hat Enterprise Linux 和 Microsoft Windows HPC Server 两种操作系统。

Wolfram Research 说,处理 Alpha 请求的将是位于同一地点的 5 套设备。项目中实际上包括两台超级计算机,合起来将近 10,000 个处理器核心以及数百 T 的硬盘。

数据通过统一的 Mathematica 语言接口以及一种按需加载机制取得,取回的数据表示成 Mathematica 表达式,这是一种 S-expressions (符号表达式)。它的大量数据涵盖了很多领域:“数学、物理、化学、天文、地理、语言学、金融等等。”据作者所说,Wolfram|Alpha 和 Mathematica 两种技术的区别在于:

Wolfram|Alpha 在 Web 界面上给出简短、快速、一次性的结果。_Mathematica_ 是一个更深更广的计算环境,用户可以处理任意类型的复杂问题。对 Wolfram|Alpha 和 _Mathematica_ 的扩展会使两者联系得更紧密。

目前 Wolfram|Alpha 的输入语言是英语,但计划未来支持其他语言。用户输入的的歧义性是这样解决的:

它将各种可能的理解作高低排列,然后对它认为最有可能的理解给出答案,并给出其他理解的答案链接。它在排列的时候还会考虑你所在的地理位置——比如离你较近的城市排位会较高。

地理位置根据用户的 IP 地址得出,数据来自 GeoIP ,精度为 5 英里。

每位用户分得的处理时间有限制。如果过了时限而请求还没处理完,它会返回部分的结果。计划中的 Wolfram|Alpha 专业版将没有计算时限列为特性之一。专业版的其他特性还有:

  • 可下载多种格式(例如电子表格、XML、3D 模型、TeX 等等。)

  • 可上传要分析的数据(例如电子表格、文字、图片、网页等等。)

  • 多种可选的显示格式

  • 保存个人或企业的偏好设置

  • 可存储实体定义

  • 动态交互能力

  • 会话历史

Wolfram 未来还有更多计划:“提供给开发者的APIs 专业版和企业版针对内部数据的定制版连接其他形式的内容部署到移动平台等新兴平台。”

以下是使用Wolfram|Alpha 的一个例子,查询“Hurricane Katrina”会得到以下结果:

每个带标题的段落被称为“pod”,其下又可以有“sub-pod”。在查询结果的底部还有信息来源的连接,以及将结果保存为PDF 格式的选项。

Wolfram|Alpha 的标志是一个菱形六十面体( rhombic hexecontahedron )。

最后为您提供一些有用的链接: Wolfram|Alpha 博客(提供最新消息)社区网站参与者网站(反馈、贡献、建议等)

查看英文原文: Wolfram|Alpha, the Details Behind the Rhombic Hexecontahedron

2009-05-25 03:463412
用户头像

发布了 225 篇内容, 共 72.3 次阅读, 收获喜欢 52 次。

关注

评论

发布
暂无评论
发现更多内容

大数据培训Flink 常见的维表 Join 方案

@零度

大数据 flink join

移动应用性能管理白皮书最新发布

基调听云

APM App 基调听云 行业报告

CentOS8安装Docker

爱好编程进阶

Java 面试 后端开发

eclispe的快捷键大全

爱好编程进阶

Java 面试 后端开发

攻克编译器技术

刘旭东

编程语言 编译器原理 4月月更

CVPR2022 前沿研究成果解读:基于生成对抗网络的深度感知人脸重演算法

阿里云CloudImagine

阿里云 计算机视觉 音视频 视频云 人脸算法

28岁自学java,包装简历3年拿到15k薪资,分享我的学习经历

爱好编程进阶

Java 面试 后端开发

Docker入门简介

爱好编程进阶

Java 面试 后端开发

测试的最终产物是什么

chenkl

测试 思维 测试原则

2021最新「阿里」Java高级工程师面试高频题

爱好编程进阶

Java 面试 后端开发

2020大厂秋招面试末班车,阿里架构师献给java程序员的面试全攻略

爱好编程进阶

Java 面试 后端开发

Flink 流批一体在小米的实践

Apache Flink

大数据 flink 编程 流计算 实时计算

云图说丨云数据库 RDS for MySQL一键开通读写分离,轻松应对业务高峰期

华为云开发者联盟

MySQL 华为云 读写分离 云数据库 rds for mysql

2021春招涨薪跳槽技术必备:分布式宝典“限流

爱好编程进阶

Java 面试 后端开发

DevOps转型到底值不值?

华为云开发者联盟

DevOps 敏捷 敏捷开发 软件工程 DevSecOps

网站速度优化的三套解决方案!

源字节1号

微信小程序 前端开发 后端开发 SEO优化

网易互娱基于 Flink 的支付环境全关联分析实践

Apache Flink

大数据 flink 编程 流计算 实时计算

Demo:第三章:权限框架spring security oauth2

爱好编程进阶

Java 面试 后端开发

泡沫之下或许是中国的“第四消费时代”

基调听云

入驻快讯|欢迎小红书技术团队正式入驻 InfoQ 写作社区!

InfoQ写作社区官方

入驻快讯

探究Presto SQL引擎(2)-浅析Join

vivo互联网技术

数据库 算法 presto

10月阿里面试总结:必问的Spring面试解析,面试时要注意的那些坑

爱好编程进阶

Java 面试 后端开发

TASKCTL 作业流程与模块之间的区别

敏捷调度TASKCTL

Docker kettle 批量任务 调度引擎 ETL任务

5 月亚马逊云科技培训与认证课程,精彩不容错过!

亚马逊云科技 (Amazon Web Services)

架构师 培训 认证

Docker 实战教程之从入门到提高 (六)

汪子熙

Docker 容器 docker image 容器镜像 4月月更

从玄学走向科学:在字节跳动广告投放这么干

字节跳动数据平台

大数据 字节跳动 广告系统 ab测试

web前端培训React基础知识点的梳理

@零度

前端开发 React

设计消息队列存储消息数据的MySQL 表格

Geek_8d5fe5

「架构实战营」

CRUD多年,终获腾讯offer,就靠这几套面试题

爱好编程进阶

Java 面试 后端开发

加速OpenHarmony生态繁荣,华为使能OpenHarmony发行版厂商

科技汇

OpenHarmony 3.1 Beta样例:使用分布式菜单创建点餐神器

OpenHarmony开发者

OpenHarmony OpenHarmony应用开发 点餐

Wolfram|Alpha,菱形六十面体背后的细节_方法论_Abel Avram_InfoQ精选文章