写点什么

LinkedIn 是如何用图神经网络扩充会员知识图谱的?

  • 2022-01-21
  • 本文字数:2778 字

    阅读完需:约 9 分钟

LinkedIn是如何用图神经网络扩充会员知识图谱的?

LinkedIn 的会员可以在自己的档案中填充个人信息,例如工作经历、教育经历、技能专长等等。从会员的输入中,我们利用人工智能模型来抽取他们的档案属性或档案实体。这个过程被称为标准化和知识图谱的构建,并生成与会员有关的实体的知识图谱。


这是了解会员档案的重要一环,以便我们能在这个平台上为会员提供更多的相关工作、新闻报道、联系和广告。作为这一过程的一部分,我们也试图对“缺失”的档案实体进行推理,这些实体在现有知识图谱中并没有抽取。比如,一个会员掌握机器学习的技能,在谷歌工作,我们就推断出,这名会员精通 TensorFlow,尽管他们目前的档案中并没有这么说。


有一些原因可以解释为何总有一些缺失的实体。首先,大部分实体抽取技术都是依赖于文本信息。如果在文本中没有特别提及某个实体,则这些模型很有可能错过这个实体。第二,会员不一定会提供全部信息。比如,会员可以不把自己掌握的全部技能都列出来,而是把自己的一些技能放在自己的档案里。通过对缺失的实体进行推理,我们可以在 LinkedIn 的产品中为会员提供更好的推荐。比如,我们可以展示更多的相关工作、新闻报道和他们可能认识的人。


推理缺失的实体具有挑战性,因为它需要对会员的档案有一个整体的理解。当前的实体抽取技术是以文本为主要输入,不能对文本中没有明确提及的实体进行推理。


本文的目的是通过从会员输入的实体,对缺失的实体进行推理。比如,我们想要利用实体“机器学习”和“谷歌”来推理“TensorFlow”。这里的困难在于将多个实体之间的交互考虑在内。有几种简单的统计方式可以从单一的实体中寻找相关的实体,例如,点互信息(pointwise mutual information,PMI)。但是,如果我们仅从“谷歌”中选择相关技能,那么我们就有很大的机会最终得到其他推理的技能,比如“MapReduce”或者“Android”,但与“TensorFlow”相比,它们在这个例子中的相关性并没有那么高。


在这篇博文中,我们将会探讨如何建立一种新的模型,利用图神经网络来解决这一问题。

我们的方法


我们将实体推理表述为图上的推理问题。图 1 是我们对表述的一个可视化。实线是给定会员的现有实体邻居,虚线是潜在的新邻居,在档案中没有明确提及。我们的目标是在给定现有邻居的情况下预测新的邻居,这可以理解为图设置中的标准链接预测问题。


图 1. 会员-实体知识图谱。连接到具有实线(以 ID 作为后缀)的会员的实体是其档案上的现有实体。连接到具有虚线(以“unk”为后缀)的会员是“未知”实体,它是由我们的模型推理而来。


本文采用图神经网络来解决连接预测问题。图神经网络(Graph Neural Network,GNN)是一种用于从图中抽取信息的神经网络,给定一个输入图,图神经网络为每个节点学习一个潜在的表征,这样一个节点的表征就是其邻居的表征集合。


通过这一过程,由图神经网络所学到的表征,可以在输入图中捕捉到连接的结构。在我们的设置中(如图 1 所示),我们的图神经网络将使用其邻居(会员及其实体)学习“company_unk”的表示,然后我们将使用该表示来预测这将是哪家公司;也就是说,我们通过聚合来自现有实体的信息,从而推理缺失的实体。


值得注意的是,由于现有的图神经网络采用了简单的聚合方法,例如平均法或者加权平均法,因此它们在聚合邻居(会员实体)方面存在差距。若现有实体之间存在复杂的交互,那么这种简单的聚合方法将会失效。


本文针对这个问题,提出了一种新型的图神经网络模型,我们称之为 Entity-BERT。这个模型采用了一个多层双向 Transformer 来进行聚合。给定一组现有的实体,我们采用了一个叫做 Transformer 的神经网络,通过计算每一对实体之间的交互(注意力)来更新一个节点的表示。为了捕获实体之间越来越复杂的交互,它会重复这一操作 6~24 次。


在自然语言处理的句子理解方面,多层双向 Transformer 具有卓越的表现,其目的在于理解给定句子中单词之间的交互。尤其是 BERT(Bidirectional Encoder Representation with Transformers,带 Transformer 的双向编码器表示),在各种自然语言处理任务中的性能,超过了其他非 Transformer 神经网络。我们相信,BERT 同样能够提高实体推理的性能。我们的类 BERT 聚合器的结构如图 2 所示。


图 2. Transformer 聚合器。输入是一个给定会员的邻居实体。输出 E[CLS] 嵌入对应于该会员。

训练和推理


该模型通过自我监督进行训练。给定一个会员档案,我们从他们的档案中屏蔽或隐藏一些属性,并学习如何预测被屏蔽的属性。我们用 [MASK] 替换每个会员档案中 10% 的实体,并按其类型(技能、职称、公司、学校等)进行分组。


图 3 展示了一个例子,其中公司和技能被屏蔽了。受自然语言处理中 BERT 的启发,我们也将实体类型作为一个额外的输入,并且给它们分配了类型 ID。例如,公司→1,行业→2,技能→3,职称→4。


图 3. 自我监督的训练


在评分/推理过程中,我们将某些屏蔽的实体添加到会员的档案中,并且指定每个屏蔽的类型。一个例子如图 4 所示。在这里,会员已经拥有了诸如 itle_9、Company_1337、Industry_6、Skill_198 和 Skill_176 等标准化的实体。我们希望为这个会员预测隐藏的技能。因此,我们将一个 [MASK] 实体附加到技能类型上。模型随后会在与 [MASK] 相同的位置输出技能。


图 4. 推理管道

成果

应用 1:技能推荐


我们的技能推荐系统推荐会员可能具备的技能,但这些技能在他们的档案中并没有提及。当会员点击档案的“技能认可”中的“添加技能”(Add a new skill)时,它就会被触发(如图 5 所示)。在新会员创建新的档案时,它也会向他们展示(如图 6 所示)。


图 5. 当会员在其档案上点击“添加技能”按钮时,展示的推荐技能。


图 6. 推荐技能的指导性编辑。


我们利用 Entity-BERT 来推理和推荐未在会员档案上提及的技能。通过将 Entity-BERT 与之前使用会员当前实体并进行简单汇总的方法进行比较,我们观察到,利用基于 Entity-BERT 的方法,可以让会员接受更多推荐。我们还观察到,这些额外的技能使得更多的会员参与,比如更多的会议。

应用 2:广告受众拓展


LinkedIn 的广告商通过会员档案属性指定他们的目标受众,比如向人工智能工程师展示广告。另外,他们中有些人还会选择受众拓展,将受众拓展到拥有类似实体的其他会员,比如向人工智能工程师和人工智能研究人员展示广告。


我们利用 Entity-BERT 对会员的档案实体(公司、技能和职称)进行扩展,并利用这些扩展的实体来拓展受众。在线上 A/B 测试中,与之前没有 Entity-BERT 的扩展模式相比,通过 Entity-BERT 进行的受众拓展,其带来的广告收入在统计学上显示出了重大影响,而不会影响到用户体验(如广告点击)。

结语


在这篇文章中,我们介绍了 Entity-BERT,它是一种新型的图神经网络,可以从现有的会员知识图谱中推理出缺失的会员实体。Entity-BERT 的创新之处在于,它使用了多层双向 Transformer 来捕捉现有实体之间的交互。Entity-BERT 已经表明,它能够有效地对缺失的实体进行推理,从而对产品产生重要的影响。


作者介绍:


Jaewon Yang,LinkedIn 高级软件工程师,韩国人。

Jiatong Chen,LinkedIn 高级软件工程师,中国人,毕业于中国科技大学,耶鲁大学研究生。

Yanen Li,LinkedIn 机器学习工程主管,中国人,毕业于华中科技大学,伊利诺伊大学香槟分校博士生。


原文链接:


https://engineering.linkedin.com/blog/2021/completing-a-member-knowledge-graph-with-graph-neural-networks

2022-01-21 10:244058

评论

发布
暂无评论
发现更多内容

记录一次使用easypoi时与源码博弈的过程

京东科技开发者

要直播啦!KaiwuDB 蓄力时序存储引擎

KaiwuDB

KaiwuDB

软件测试学习笔记丨JUnit5动态测试规则

测试人

软件测试

高效存储的秘诀:bitmap 数据结构在标签中的应用

袋鼠云数栈

数据结构 BitMap 标签 用户画像 标签体系

实现经典网络 ECS 实例内网互通的方案

极客天地

使用 bend-ingest-kafka 将数据流实时导入到 Databend

Databend

软工智库|低代码篇(一)——低代码开发平台发展趋势是什么?

电子标准院软工研究室

常用网络命令 dig 详解及使用示例

不在线第一只蜗牛

网络 dig

软工智库|低代码篇(二)——低代码开发平台内涵是什么?

电子标准院软工研究室

一文读懂DNS解析原理、设置步骤、生效时间和常见问题

防火墙后吃泡面

分享一次海量数据平滑迁移实战

京东科技开发者

Mac单机游戏推荐:星际争霸母巢之战 for Mac v1.16.1汉化版

你的猪会飞吗

Mac游戏下载 mac单机游戏

OpenAI 向少部分用户推出 GPT-4o(S2S)模型;Meta 发布 3D Gen AI 模型丨 RTE 开发者日报

声网

内推失败!

王磊

项目

淘宝/天猫商品详情API接口在电商数据整合中的作用

技术冰糖葫芦

API Explorer API 编排 API 文档

万字长文讲透微信小程序的底层架构

landred

微信小程序

探索 Apache Paimon 在阿里智能引擎的应用场景

Apache Flink

大数据 flink paimon Apache Flink Apache Paimon

ETL数据集成丨使用ETLCloud实现MySQL与Greenplum数据同步

谷云科技RestCloud

MySQL greenplum ETL 数据集成 ETLCloud

MobPush for Uni-app

MobTech袤博科技

开发者,产品动态,java

LinkedIn是如何用图神经网络扩充会员知识图谱的?_文化 & 方法_Jaewon Yang_InfoQ精选文章