速来报名!AICon北京站鸿蒙专场~ 了解详情
写点什么

TensorFlow 2.0 迁移学习实践指南

  • 2019-12-05
  • 本文字数:10948 字

    阅读完需:约 36 分钟

TensorFlow 2.0迁移学习实践指南


阅读深度学习论文总是很有趣,也很有教育意义,特别是当这些论文和你现在做的项目属于同一领域时更是如此。但是,这些论文包含的架构和解决方案通常很难训练,特别是当你想去尝试他们的方法时,比如说 ILSCVR(ImageNet Large Scale Visual Recognition)竞赛中的一些获奖者的方法。我记得我在读 VGG16 的论文时就在想“这个方法很酷,但是我的 GPU 跑这个网络时都快挂了。”为了能轻松使用这些网络,Tensorflow 2 提供了大量的预训练模型,你可以很快用上它们。而本文,我们将介绍怎样通过一些有名的 CNN(Convolutional Neural Network)架构来训练这些论文里介绍的新的神经网络模型。


这时你可能会问“预训练模型是什么?”。本质上来说,预训练模型是之前在大数据集上已经训练好并保存下来的模型,比如说在 ImageNet 数据集上训练的模型。这些模型可以在 tensorflow.keras.applications 模块里找到。有两种方式使用这些预训练模型,你可以直接使用它们,或者通过迁移学习使用它们。由于大数据集通常用于某种全局解,所以你可以让预训练模型定制化,使其特别针对性地解决某个特定的问题。通过这个方式,你可以在训练时利用一些最有名的神经网络,不会损失太多的训练时间和计算资源。另外,你可以选定网络里的一些层,修改这些层的行为,实现这些模型的微调。我们在后面的文章里会讲到这一点。

架构

在本文中,我们使用 3 个预训练模型来解决分类问题的一个例子:VGG16、GoogLeNet(Inception)和 ResNet。这每一个架构都赢得了当年的 ILSCVR 竞赛。2014 年,VGG16 与 GooLeNet 有着相同的最好成绩,而 ResNet 赢得了 2015 年的竞赛。这些模型是 Tensorflow 2 中 tensorflow.keras.applications 模块的一部分。让我们深入探究一下这几个模型。


我们首先看一下 VGG16 这个架构。它是一个大型的卷积神经网络,由 K. Simonyan 和 A. Zisserman 在“Very Deep Convolutional Networks for Large-Scale Image Recognition”这篇论文里提出。这个网络在 ImageNet 数据集上达到了 92.7%的 top-5 测试精确度。但是,训练这个网络需要好几周。下图是这个模型的高层概览:



VGG16 架构


GoogLeNet 也被称为 Inception,这是因为它使用了两个概念:1x1 卷积和 Inception 模块。第一个概念中,1x1 卷积用于降维的模块。通过降维,计算量也会减少,这也就意味着网络的深度和宽度可以增加了。GooLeNet 使用了 Inception 模块,每个卷积层的大小都不相同。



带有降维功能的 Inception 模块


如图所示,1x1 卷积层、3x3 卷积层、5x5 卷积层和 3x3 最大池化层操作组合在了一起,然后这些层的运行结果会在输出节点处堆叠在一起。GooLeNet 总共有 22 层,看起来像下面这样:



本文中,我们要使用的最后一个网络架构是残差网络,或者称作 ResNet。前面提到的网络的问题在于它们太深了,它们有太多层,导致很难训练(因为梯度消失)。所以,ResNet 使用所谓的“identity shortcut connection”(或者称作残差模块)来解决这个问题。



带有降维和不带降维的残差模块


本质上来讲,ResNet 沿用了 VGG 的 3x3 卷积层的设计,每层卷积后面都有一个 Batch Normalization 层和 ReLu 激活函数。但是,差异点在于我们的 ResNet 在最后一个 ReLu 前插入了 input 节点。另一个变种是,输入值(input value)传入了 1x1 卷积层。

数据集

在本文中,我们使用“Cats vs Dogs”的数据集。这个数据集包含了 23,262 张猫和狗的图像。



你可能注意到了,这些照片没有归一化,它们的大小是不一样的。但是非常棒的一点是,你可以在 Tensorflow Datasets 中获取这个数据集。所以,确保你的环境里安装了 Tensorflow Dataset。


pip install tensorflow-dataset
复制代码


和这个库中的其他数据集不同,这个数据集没有划分成训练集和测试集,所以我们需要自己对这两类数据集做个区分。你可以在这里找到这个数据集的更多信息。

实现

这个实现分成了几个部分。首先,我们实现了一个类,其负责载入数据和准备数据。然后,我们导入预训练模型,构建一个用于修改最顶端的几层网络。最后,我们把训练过程运行起来,并进行评估。当然,在这之前,我们必须导入一些代码库,定义一些全局常量:


import numpy as npimport matplotlib.pyplot as plt
import tensorflow as tfimport tensorflow_datasets as tfds
IMG_SIZE = 160BATCH_SIZE = 32SHUFFLE_SIZE = 1000IMG_SHAPE = (IMG_SIZE, IMG_SIZE, 3)
复制代码


好,让我们仔细来看下实现!

数据载入器

这个类负责载入数据和准备数据,用于后续的数据处理。以下是这个类的实现:


class DataLoader(object):    def __init__(self, image_size, batch_size):                self.image_size = image_size        self.batch_size = batch_size                # 80% train data, 10% validation data, 10% test data        split_weights = (8, 1, 1)        splits = tfds.Split.TRAIN.subsplit(weighted=split_weights)                (self.train_data_raw, self.validation_data_raw, self.test_data_raw), self.metadata = tfds.load(            'cats_vs_dogs', split=list(splits),            with_info=True, as_supervised=True)                # Get the number of train examples        self.num_train_examples = self.metadata.splits['train'].num_examples*80/100        self.get_label_name = self.metadata.features['label'].int2str                # Pre-process data        self._prepare_data()        self._prepare_batches()            # Resize all images to image_size x image_size    def _prepare_data(self):        self.train_data = self.train_data_raw.map(self._resize_sample)        self.validation_data = self.validation_data_raw.map(self._resize_sample)        self.test_data = self.test_data_raw.map(self._resize_sample)        # Resize one image to image_size x image_size    def _resize_sample(self, image, label):        image = tf.cast(image, tf.float32)        image = (image/127.5) - 1        image = tf.image.resize(image, (self.image_size, self.image_size))        return image, label        def _prepare_batches(self):        self.train_batches = self.train_data.shuffle(1000).batch(self.batch_size)        self.validation_batches = self.validation_data.batch(self.batch_size)        self.test_batches = self.test_data.batch(self.batch_size)       # Get defined number of  not processed images    def get_random_raw_images(self, num_of_images):        random_train_raw_data = self.train_data_raw.shuffle(1000)        return random_train_raw_data.take(num_of_images)
复制代码


这个类实现了很多功能,它实现了很多“public”方法


  • _prepare_data:内部方法,用于缩放和归一化数据集里的图像。构造函数需要用到该函数。

  • _resize_sample:内部方法,用于缩放单张图像。

  • _prepare_batches:内部方法,用于将图像打包创建为 batches。创建 train_batches、validation_batches 和 test_batches,分别用于训练、评估过程。

  • get_random_raw_images:这个方法用于从原始的、没有经过处理的数据中随机获取固定数量的图像。


但是,这个类的主要功能还是在构造函数中完成的。让我们仔细看看这个类的构造函数。


def __init__(self, image_size, batch_size):
self.image_size = image_size self.batch_size = batch_size
# 80% train data, 10% validation data, 10% test data split_weights = (8, 1, 1) splits = tfds.Split.TRAIN.subsplit(weighted=split_weights)
(self.train_data_raw, self.validation_data_raw, self.test_data_raw), self.metadata = tfds.load( 'cats_vs_dogs', split=list(splits), with_info=True, as_supervised=True)
# Get the number of train examples self.num_train_examples = self.metadata.splits['train'].num_examples*80/100 self.get_label_name = self.metadata.features['label'].int2str
# Pre-process data self._prepare_data() self._prepare_batches()
复制代码


首先我们通过传入参数定义了图像大小和 batch 大小。然后,由于该数据集本身没有区分训练集和测试集,我们通过划分权值对数据进行划分。这真是 Tensorflow Dataset 引入的非常棒的功能,因为我们可以留在 Tensorflow 生态系统中做这件事,我们不用引入其他的库(比如 Pandas 或者 Scikit Learn)。一旦我们执行了数据划分,我们就开始计算训练样本数量,然后调用辅助函数来为训练准备数据。在这之后,我们需要做的仅仅是实例化这个类的对象,然后载入数据即可。


data_loader = DataLoader(IMG_SIZE, BATCH_SIZE)
plt.figure(figsize=(10, 8))i = 0for img, label in data_loader.get_random_raw_images(20): plt.subplot(4, 5, i+1) plt.imshow(img) plt.title("{} - {}".format(data_loader.get_label_name(label), img.shape)) plt.xticks([]) plt.yticks([]) i += 1plt.tight_layout()plt.show()
复制代码


以下是输出结果:


基础模型 & Wrapper

下一个步骤就是载入预训练模型了。我们前面提到过,这些模型位于 tensorflow.kearas.applications。我们可以用下面的语句直接载入它们:


vgg16_base = tf.keras.applications.VGG16(input_shape=IMG_SHAPE, include_top=False, weights='imagenet')googlenet_base = tf.keras.applications.InceptionV3(input_shape=IMG_SHAPE, include_top=False, weights='imagenet')resnet_base = tf.keras.applications.ResNet101V2(input_shape=IMG_SHAPE, include_top=False, weights='imagenet')
复制代码


这段代码就是我们创建上述三种网络结构基础模型的方式。注意,每个模型构造函数的 include_top 参数传入的是 false。这意味着这些模型是用于提取特征的。我们一旦创建了这些模型,我们就需要修改这些模型顶部的网络层,使之适用于我们的具体问题。我们使用 Wrapper 类来完成这个步骤。这个类接收预训练模型,然后添加一个 Global Average Polling Layer 和一个 Dense Layer。本质上,这最后的 Dense Layer 会用于我们的二分类问题(猫或狗)。Wrapper 类把所有这些元素都放到了一起,放在了同一个模型中。


class Wrapper(tf.keras.Model):    def __init__(self, base_model):        super(Wrapper, self).__init__()                self.base_model = base_model        self.average_pooling_layer = tf.keras.layers.GlobalAveragePooling2D()        self.output_layer = tf.keras.layers.Dense(1)            def call(self, inputs):        x = self.base_model(inputs)        x = self.average_pooling_layer(x)        output = self.output_layer(x)        return output
复制代码


然后我们就可以创建 Cats vs Dogs 分类问题的模型了,并且编译这个模型。


base_learning_rate = 0.0001
vgg16_base.trainable = Falsevgg16 = Wrapper(vgg16_base)vgg16.compile(optimizer=tf.keras.optimizers.RMSprop(lr=base_learning_rate), loss='binary_crossentropy', metrics=['accuracy'])
googlenet_base.trainable = Falsegooglenet = Wrapper(googlenet_base)googlenet.compile(optimizer=tf.keras.optimizers.RMSprop(lr=base_learning_rate), loss='binary_crossentropy', metrics=['accuracy'])
resnet_base.trainable = Falseresnet = Wrapper(resnet_base)resnet.compile(optimizer=tf.keras.optimizers.RMSprop(lr=base_learning_rate), loss='binary_crossentropy', metrics=['accuracy'])
复制代码


注意,我们标记了基础模型是不参与训练的,这意味着在训练过程中,我们只会训练新添加到顶部的网络层,而在网络底部的权重值不会发生变化。

训练

在我们开始整个训练过程之前,让我们思考一下,这些模型的大部头其实已经被训练过了。所以,我们可以执行评估过程来看看评估结果如何:


steps_per_epoch = round(data_loader.num_train_examples)//BATCH_SIZEvalidation_steps = 20
loss1, accuracy1 = vgg16.evaluate(data_loader.validation_batches, steps = 20)loss2, accuracy2 = googlenet.evaluate(data_loader.validation_batches, steps = 20)loss3, accuracy3 = resnet.evaluate(data_loader.validation_batches, steps = 20)
print("--------VGG16---------")print("Initial loss: {:.2f}".format(loss1))print("Initial accuracy: {:.2f}".format(accuracy1))print("---------------------------")
print("--------GoogLeNet---------")print("Initial loss: {:.2f}".format(loss2))print("Initial accuracy: {:.2f}".format(accuracy2))print("---------------------------")
print("--------ResNet---------")print("Initial loss: {:.2f}".format(loss3))print("Initial accuracy: {:.2f}".format(accuracy3))print("---------------------------")
复制代码


有意思的是,这些模型在没有预先训练的情况下,我们得到的结果也还过得去(50%的精确度):


———VGG16———Initial loss: 5.30Initial accuracy: 0.51—————————-
——GoogLeNet—–Initial loss: 7.21Initial accuracy: 0.51—————————-
——–ResNet———Initial loss: 6.01Initial accuracy: 0.51—————————-
复制代码


把 50%作为训练的起点已经挺好的了。所以,就让我们把训练过程跑起来吧,看看我们是否能得到更好的结果。首先,我们训练 VGG16:


history = vgg16.fit(data_loader.train_batches,                    epochs=10,                    validation_data=data_loader.validation_batches)
复制代码


训练过程历史数据显示大致如下:



VGG16 的训练过程历史数据


然后我们可以训练 GoogLeNet。


history = googlenet.fit(data_loader.train_batches,                    epochs=10,                    validation_data=data_loader.validation_batches)
复制代码


这个网络训练过程历史数据如下:



GoogLeNet 的训练过程历史数据


最后是 ResNet 的训练:


history = resnet.fit(data_loader.train_batches,                    epochs=10,                    validation_data=data_loader.validation_batches)
复制代码


以下是 ResNet 训练过程历史数据如下:



ResNet 的训练过程历史数据


由于我们只训练了顶部的几层网络,而不是整个网络,所以训练这三个模型只用了几个小时,而不是几个星期。

评估

我们看到在训练开始前,我们已经有了 50%左右的精确度。让我们来看下训练后是什么情况:


loss1, accuracy1 = vgg16.evaluate(data_loader.test_batches, steps = 20)loss2, accuracy2 = googlenet.evaluate(data_loader.test_batches, steps = 20)loss3, accuracy3 = resnet.evaluate(data_loader.test_batches, steps = 20)
print("--------VGG16---------")print("Loss: {:.2f}".format(loss1))print("Accuracy: {:.2f}".format(accuracy1))print("---------------------------")
print("--------GoogLeNet---------")print("Loss: {:.2f}".format(loss2))print("Accuracy: {:.2f}".format(accuracy2))print("---------------------------")
print("--------ResNet---------")print("Loss: {:.2f}".format(loss3))print("Accuracy: {:.2f}".format(accuracy3))print("---------------------------")
复制代码


结果如下:


——–VGG16———Loss: 0.25Accuracy: 0.93—————————
——–GoogLeNet———Loss: 0.54Accuracy: 0.95———————————–ResNet———Loss: 0.40Accuracy: 0.97—————————
复制代码


我们可以看到这三个模型的结果都相当好,其中 ResNet 效果最好,精确度高达 97%。

结论

在本文中,我们演示了怎样使用 Tensorflow 进行迁移学习。我们创建了一个试验场,在其中可以尝试不同的数据预训练架构,并且在几个小时内就能得到较好的结果。在我们的例子里,我们使用了三个很有名的卷积架构,快速将其修改用于具体的问题。在下篇文章中,我们将微调这些模型,来看看我们是否能得到更好的结果。


原文链接:


https://rubikscode.net/2019/11/11/transfer-learning-with-tensorflow-2/


2019-12-05 08:043082
用户头像
蔡芳芳 InfoQ主编

发布了 801 篇内容, 共 557.0 次阅读, 收获喜欢 2790 次。

关注

评论

发布
暂无评论
发现更多内容

财经违规自媒体集体扑街,必须打击违规自媒体账号

石头IT视角

建立测试自动化策略【译】

FunTester

自动化测试 测试框架 测试管理 测试策略 FunTester

NQI质量基础设施一站式方案,NQI一站式线上平台搭建

13530558032

自动化驱动的高可用网络:爱奇艺B2网络流量自动调度系统建设实践

爱奇艺技术产品团队

流量

软件测试工程师应该怎样规划自己

程序员阿沐

程序员 职业规划 软件测试 自动化测试 经验分享

【上汽零束SOA】云管端一体化SOA软件平台系列介绍之五:服务实现篇

SOA开发者平台

软件 车联网 物联网 汽车

Java 17 正式发布,Oracle 宣布从 JDK 17 开始正式免费,Java 迈入新时代

Java 编程 源码 架构

等保三级多久测评一次?每年都要测评吗?

行云管家

网络安全 信息安全 等保

2021智博会全国区块链大赛暨首届“星火杯”区块链应用大赛正式启动

云计算,

到底什么是区块链?是咋样的运营原理

CECBC

终于完成了私有NPM和PYPI repo的搭建

吴脑的键客

npm nexus pypi

【上汽零束SOA】云管端一体化SOA软件平台系列介绍之六:数字生态篇

SOA开发者平台

软件 SOA 生态 汽车 OTA

【上汽零束SOA】云管端一体化SOA软件平台系列介绍之六:数字生态篇

SOA开发者

自动驾驶 SOA 智能汽车 OTA

【云计算】从事云计算运维可以考取哪些证书?

行云管家

云计算 阿里云 运维 华为云 云运维

让全链路压测变得更简单!Takin2.0重磅来袭!

TakinTalks稳定性社区

【Vuex 源码学习】第五篇 - Vuex 中 Mutations 和 Actions 的实现

Brave

源码 vuex 9月日更

区块链是如何运作的、是如何防止被篡改的?

CECBC

【上汽零束SOA】云管端一体化SOA软件平台系列介绍之五:服务实现篇

SOA开发者

软件 SOA

商务礼仪培训PPT模板-优页文档

momo

免费PPT模板 优页文档

高可用 | 关于 Xenon 高可用的一些思考

RadonDB

MySQL 数据库

数字货币钱包开发,imtoken钱包系统搭建

13530558032

【OpenIM原创】IM服务端docker、源码、集群部署 非常实用

OpenIM

北鲲云SaaS平台为生物制药研发进程带来“加速度”

北鲲云

围绕低代码开发存在的三个误解

低代码小观

程序员 低代码 企业管理 低代码开发平台 应用开发

部门经理竞聘报告PPT模板-优页文档

momo

模板 优页文档 优页文档PPT模板

Apollo 配置中心详细教程

牧小农

Apollo 阿波罗

Canal Admin 高可用集群使用教程

Se7en

百度智慧输入,会是企业降本增效的“新生产力”吗?

ToB行业头条

百度 企业服务 百度输入法

北京大学医疗科技风论文答辩PPT模板-优页文档

momo

PT模板 优页文档

量化交易APP开发,量化交易系统源码

13530558032

3年才能驾驭新技术,不如试试这个低代码魔方

华为云开发者联盟

低代码 开发 华为云应用魔方 应用程序 魔方

TensorFlow 2.0迁移学习实践指南_语言 & 开发_Rubikscode_InfoQ精选文章