写点什么

MIT 研究人员发现 ImageNet 数据集存在系统级缺陷

  • 2020-07-28
  • 本文字数:1775 字

    阅读完需:约 6 分钟

MIT 研究人员发现ImageNet数据集存在系统级缺陷

本文最初发表于 venturebeat,由 InfoQ 中文站翻译并分享


麻省理工学院研究人员得出结论,众所周知的 ImageNet数据集存在“系统注释问题”,当用作基准数据集时,与实际情况或直接观测结果并不一致。


“我们的分析明确指出,嘈杂的数据收集管道是如何导致结果基准与其作为代理的实际任务之间的系统性不一致的 ” , 麻省理工学院的研究人员 在一篇题为《从 ImageNet 到图像分类:基准测试的情景化进展》的论文中写道,“我们相信,开发能够更好地捕捉实际情况,同时又保持可扩展性的注释管道,是未来研究的重要途径。”


当斯坦福大学视觉实验室(Stanford University Vision Lab)在 2009 年的计算机视觉与模式识别大会 CVPR 上 介绍 ImageNet时,它比许多以前存在的图像数据集要大得多。ImageNet 的数据集包含数百万张照片, 这些照片是在两年多的时间里收集的。ImageNet 将 WordNet 层次结构用于数据标签,并被广泛用作物体识别模型的基准。直到 2017 年,ImageNet 的年度竞赛还在推进计算机视觉领域发挥着作用。



但是,在仔细研究 ImageNet 的“基准任务不一致”之后,麻省理工学院的研究小组发现,大约 20% 的 ImageNet 照片包含了多个物体。他们对多个物体识别模型的分析表明,在一张照片中有多个物体会导致整体正确率下降 10%。作者声称,这些问题的核心是用于创建像 ImageNet 这样的大规模图像数据集的数据收集管道。


“总的来说,这个[注释]管道表明,单个 ImageNet 标签并不总是足以捕获 ImageNet 图像内容。然而,当我们训练和评估的时候,我们将这些标签视为基本事实。”报告合著者、麻省理工学院博士生 Shibani Santurkar 在国际机器学习大会 ICML 上 介绍了这项研究结果。“因此,这可能会导致 ImageNet 基准测试与现实世界的物体识别任务之间出现不一致的现象,无论是在我们鼓励模型所做的特性方面,还是在我们如何评估它们的性能方面,都是如此。”


据研究人员的说法,大规模图像数据集的理想方法是收集世界上单个物体的图像,并由专家按照确切的类别对它们进行标注,但这并不便宜,而且也不容易进行扩展。相反,ImageNet 从搜索引擎和像 Flickr 这样的网站上收集图片。然后,通过 Amazon Mechanical Turk 这样的群众外包平台对从互联网搜索引擎收集来的图片进行分类标注。研究人员指出,给 ImageNet 照片标注的 Amazon Mechanical Turk 被要求专注于一个物体,而忽略了其他物体或遮挡物。研究人员称,其他大规模图像数据集也遵循类似的(而且可能还存在问题)管道。


为了评估 ImageNet,研究人员创建了一个管道,要求人类注释员从多个标签中选择一个与照片最相关的。然后,最常被选中标签被用来训练模型,以确定研究人员所说的“绝对基础事实”。


“我们利用的关键思想是利用模型预测实际增强 ImageNet 标签。具体来说,我们采用了多种模型,并将它们的前五个预测汇总起来,得到一组候选标签。” Santurkar 说。“然后,我们实际上通过使用人类注释员来确定这些标签的有效性,但我们不是询问他们单个标签是否有效,而是对多个标签单独重复这个过程。这使得我们能够确定与单个图像可能相关的标签集。”


但研究小组警告说,他们的方法并不完全符合基本事实,因为他们也使用了非专家数据标签。他们的结论是,对于不是专家的人类注释员来说,在某些情况下很难准确地对图像进行标注。例如,除非你是犬类专家,否则从 24 种梗类犬选择一种标签可能是很困难的。


该研究小组的论文在 5 月下旬 首次发表后,于日前被 ICML 接受发表。这篇论文在会议上发表之前, 麻省理工学院决定从互联网上删除 8000 万张小图数据集,并要求拥有该数据集副本的研究人员予以删除。这些措施是在研究人员提请注意数据集中的冒犯性标签,如 N 开头的词,以及针对女性的性别歧视属于和其他贬损性标签后采取的。研究人员对 2006 年发布的 8000 万张小图数据集进行了审核,结论是这些标签是 WordNet 层次结构的结果。


ImageNet 也使用 WordNet 层级结构, 在 ACM FaccT 会议上发表的一篇论文中,ImageNet 的创建者表示,他们计划删除数据集 Person 子树中几乎所有的约 2800 个类别。他们还列举了该数据的其他问题,比如缺乏图像多样性。

作者介绍:

Khari John,非裔美国人,住在旧金山东湾。是 VentureBeat 人工智能专栏作家。


原文链接:


https://venturebeat.com/2020/07/15/mit-researchers-find-systematic-shortcomings-in-imagenet-data-set/


2020-07-28 07:003156
用户头像
刘燕 InfoQ高级技术编辑

发布了 1123 篇内容, 共 606.6 次阅读, 收获喜欢 1982 次。

关注

评论

发布
暂无评论
发现更多内容

关于SQL书写建议-&索引优化的总结,真香警告

Java 程序员 后端

作为一名程序员我不忘初心,java学习路线尚硅谷,Java工程师进阶之路

Java 程序员 后端

保持稳定迭代的秘密:基于Spinnaker的全自动渐进式交付

博文视点Broadview

你头秃都没想到还能这样吧,Java这些高端技术只有你还不知道

Java 程序员 后端

你想学的都在这里,开课吧java架构师百度云,阿里Java开发面试解答

Java 程序员 后端

架构实战营-模块一

Aha hello xzy

架构实战营 「架构实战营」

关于Java性能优化的几点建议,图灵学院4期百度网盘,附项目源码

Java 程序员 后端

作为一名程序员我不忘初心,2021年是做Java开发人员的绝佳时机

Java 程序员 后端

入职3个月的Java程序员面临转正,原来SqlSession只是个甩手掌柜

Java 程序员 后端

再见SpringMVC,linux教程第四版实验答案,Java全栈面试题

Java 程序员 后端

写给互联网大厂员工的真心话,MySQL优化原理分析及优化方案总结

Java 程序员 后端

其实Zookeeper的选举机制也不难理解,今日头条Java后端面试

Java 程序员 后端

作为字节跳动面试官,linux菜鸟教程pdf下载,深度集成!

Java 程序员 后端

你有过迷茫吗,java的网络编程教程视频,这些知识点你会吗

Java 程序员 后端

做Java程序员真的没有春天吗,12年高级工程师的“飞升之路”

Java 程序员 后端

全套教程百度云,java菜鸟教程多态,Mybatis源码解析

Java 程序员 后端

全栈系统化的学习路线,基于SpringCloud微服务化开发平台项目

Java 程序员 后端

全靠我啃烂了这份2021最新面试题,系统盘点Java开发者必须掌握的知识点

Java 程序员 后端

作为一名Java面试者你应该知道的,阿里,快手,拼多多等7家大厂Java面试真题

Java 程序员 后端

作为一名程序员我不忘初心,听说你在找SpringBoot整合案例

Java 程序员 后端

你不知道这份超详细JVM内存结构,Java吊打面试官系列

Java 程序员 后端

你不知道这份超详细JVM内存结构,京东校招Java面试题

Java 程序员 后端

关于Java性能优化的几点建议,java编程书籍合集百度云,终局之战

Java 程序员 后端

掌握渗透测试,从Web漏洞靶场搭建开始

华为云开发者联盟

测试 渗透测试 漏洞 漏洞靶场 wavsep

作为程序员一定不要仅仅追求物质,Javaweb面试宝典

Java 程序员 后端

你还搞不定分布式系统流控、熔断吗,2021年最新Java面试点梳理

Java 程序员 后端

写给Java软件工程师的3条建议,百度笔试题百度校招面试经验,开源新作

Java 程序员 后端

你的技术真的到天花板了吗,值得推荐!

Java 程序员 后端

你连基础的JVM运行时内存布局都忘了,springmvc实战教程

Java 程序员 后端

云图说|初识云数据库GaussDB(for Redis)

华为云开发者联盟

数据库 redis 开源 华为云 GaussDB(for Redis)

写给Java开发的小程序布局指南,震惊

Java 程序员 后端

MIT 研究人员发现ImageNet数据集存在系统级缺陷_AI&大模型_KHARI JOHNSON_InfoQ精选文章