如何 0 成本启动全员 AI 技能提升?戳> 了解详情
写点什么

MIT 研究人员发现 ImageNet 数据集存在系统级缺陷

  • 2020-07-28
  • 本文字数:1775 字

    阅读完需:约 6 分钟

MIT 研究人员发现ImageNet数据集存在系统级缺陷

本文最初发表于 venturebeat,由 InfoQ 中文站翻译并分享


麻省理工学院研究人员得出结论,众所周知的 ImageNet数据集存在“系统注释问题”,当用作基准数据集时,与实际情况或直接观测结果并不一致。


“我们的分析明确指出,嘈杂的数据收集管道是如何导致结果基准与其作为代理的实际任务之间的系统性不一致的 ” , 麻省理工学院的研究人员 在一篇题为《从 ImageNet 到图像分类:基准测试的情景化进展》的论文中写道,“我们相信,开发能够更好地捕捉实际情况,同时又保持可扩展性的注释管道,是未来研究的重要途径。”


当斯坦福大学视觉实验室(Stanford University Vision Lab)在 2009 年的计算机视觉与模式识别大会 CVPR 上 介绍 ImageNet时,它比许多以前存在的图像数据集要大得多。ImageNet 的数据集包含数百万张照片, 这些照片是在两年多的时间里收集的。ImageNet 将 WordNet 层次结构用于数据标签,并被广泛用作物体识别模型的基准。直到 2017 年,ImageNet 的年度竞赛还在推进计算机视觉领域发挥着作用。



但是,在仔细研究 ImageNet 的“基准任务不一致”之后,麻省理工学院的研究小组发现,大约 20% 的 ImageNet 照片包含了多个物体。他们对多个物体识别模型的分析表明,在一张照片中有多个物体会导致整体正确率下降 10%。作者声称,这些问题的核心是用于创建像 ImageNet 这样的大规模图像数据集的数据收集管道。


“总的来说,这个[注释]管道表明,单个 ImageNet 标签并不总是足以捕获 ImageNet 图像内容。然而,当我们训练和评估的时候,我们将这些标签视为基本事实。”报告合著者、麻省理工学院博士生 Shibani Santurkar 在国际机器学习大会 ICML 上 介绍了这项研究结果。“因此,这可能会导致 ImageNet 基准测试与现实世界的物体识别任务之间出现不一致的现象,无论是在我们鼓励模型所做的特性方面,还是在我们如何评估它们的性能方面,都是如此。”


据研究人员的说法,大规模图像数据集的理想方法是收集世界上单个物体的图像,并由专家按照确切的类别对它们进行标注,但这并不便宜,而且也不容易进行扩展。相反,ImageNet 从搜索引擎和像 Flickr 这样的网站上收集图片。然后,通过 Amazon Mechanical Turk 这样的群众外包平台对从互联网搜索引擎收集来的图片进行分类标注。研究人员指出,给 ImageNet 照片标注的 Amazon Mechanical Turk 被要求专注于一个物体,而忽略了其他物体或遮挡物。研究人员称,其他大规模图像数据集也遵循类似的(而且可能还存在问题)管道。


为了评估 ImageNet,研究人员创建了一个管道,要求人类注释员从多个标签中选择一个与照片最相关的。然后,最常被选中标签被用来训练模型,以确定研究人员所说的“绝对基础事实”。


“我们利用的关键思想是利用模型预测实际增强 ImageNet 标签。具体来说,我们采用了多种模型,并将它们的前五个预测汇总起来,得到一组候选标签。” Santurkar 说。“然后,我们实际上通过使用人类注释员来确定这些标签的有效性,但我们不是询问他们单个标签是否有效,而是对多个标签单独重复这个过程。这使得我们能够确定与单个图像可能相关的标签集。”


但研究小组警告说,他们的方法并不完全符合基本事实,因为他们也使用了非专家数据标签。他们的结论是,对于不是专家的人类注释员来说,在某些情况下很难准确地对图像进行标注。例如,除非你是犬类专家,否则从 24 种梗类犬选择一种标签可能是很困难的。


该研究小组的论文在 5 月下旬 首次发表后,于日前被 ICML 接受发表。这篇论文在会议上发表之前, 麻省理工学院决定从互联网上删除 8000 万张小图数据集,并要求拥有该数据集副本的研究人员予以删除。这些措施是在研究人员提请注意数据集中的冒犯性标签,如 N 开头的词,以及针对女性的性别歧视属于和其他贬损性标签后采取的。研究人员对 2006 年发布的 8000 万张小图数据集进行了审核,结论是这些标签是 WordNet 层次结构的结果。


ImageNet 也使用 WordNet 层级结构, 在 ACM FaccT 会议上发表的一篇论文中,ImageNet 的创建者表示,他们计划删除数据集 Person 子树中几乎所有的约 2800 个类别。他们还列举了该数据的其他问题,比如缺乏图像多样性。

作者介绍:

Khari John,非裔美国人,住在旧金山东湾。是 VentureBeat 人工智能专栏作家。


原文链接:


https://venturebeat.com/2020/07/15/mit-researchers-find-systematic-shortcomings-in-imagenet-data-set/


2020-07-28 07:002952
用户头像
刘燕 InfoQ高级技术编辑

发布了 1112 篇内容, 共 592.5 次阅读, 收获喜欢 1981 次。

关注

评论

发布
暂无评论
发现更多内容

一种新的流:为 Java 加入生成器(Generator)特性

阿里巴巴云原生

Java 阿里云 云原生

Retrofit 在 JSON 反序列化的时候提示 UnrecognizedPropertyException 异常

HoneyMoose

Mac哪款系统性能软件好用呢?Performance Index 64 Pro mac版推荐~

真大的脸盆

Mac Mac 软件 系统性能监测

大数据之Hadoop图解概述

袁袁袁袁满

三周年连更

【Linux】之Centos7安装KVM虚拟化及相关命令

A-刘晨阳

Linux 虚拟化 kvm 三周年连更

算法题每日一练:最长递增子序列

知心宝贝

数据结构 算法 前端 后端 三周年连更

Prometheus实战-从0构建高可用监控平台(一)

小毛驴的烂笔头

Prometheus

如何建设一个用于编译 iOS App 的 macOS 云服务器集群?

京东科技开发者

ios 编译 CI/CD 企业号 4 月 PK 榜 云服务集群

语雀-使用指南

六月的雨在InfoQ

在线文档 在线协同文档 三周年连更 语雀

跨平台应用开发进阶(五十六):应用渲染异常问题分析及解决

No Silver Bullet

跨平台应用开发 三周年连更 问题分析及解决 渲染异常

如何优雅的处理异常

京东科技开发者

异常处理 java 抛出异常 企业号 4 月 PK 榜 throwale

一些常见的字符串匹配算法

京东科技开发者

字符串 字符串匹配算法 企业号 4 月 PK 榜 文本处理

突破传统监测模式:业务状态监控HM的新思路

京东科技开发者

系统架构 监控系统 数据监控 业务监控 企业号 4 月 PK 榜

DockerSwarm实践及原理

乌龟哥哥

三周年连更

C# 之 字符串前加@(逐字字符串标识符)

陈言必行

C# 三周年连更

代码优雅之道——如何干掉过多的if else

小小怪下士

Java 程序员 后端 代码

高效易用的C++单元测试框架:轻松构建高质量代码

万木春

c++ GitHub 单元测试

执行个 DEL 竟然也会阻塞 Redis?深挖一下果然不简单

架构精进之路

redis 缓存 后端 bigkey 三周年连更

复旦MOSS大模型开源了!Github和Hugging Face同时上线

Openlab_cosmoplat

人工智能 开源项目 ChatGPT

关于 SaaS 软件销售领域中的 Renewal 和 linearity

汪子熙

SaaS Cloud Studio 三周年连更

数字北京城,航行在联通2000M的“大运河”

脑极体

联通

你如何看待,“国内ChatGPT还没成熟,但ChatGPT的付费模式已经成熟了?”

小傅哥

人工智能 小傅哥 ChatGPT 人工智能ChatGPT 吗? ChatGPT4

Matlab实现遗传算法

Shine

三周年连更

2023 年最全面的 DevOps 工具列表,你用过几个?

Java架构历程

DevOps 三周年连更

Python项目实战│ Python实现线程池工作模式

TiAmo

Python 线程池 三周年连更 工作模式

《API加速优化方案:多级缓存设计》

后台技术汇

三周年连更

迪斯克Disrupt DEX众筹挖矿系统开发技术

薇電13242772558

dapp

Java如何获取@ApiModelProperty(value = “序列号“, name = “uuid“)注解中的value值name值?

bug菌

三周年连更 获取注解值

易观千帆 | 2023年3月证券APP月活跃用户规模盘点

易观分析

证券 经济

用友BIP助力中国领先企业数智化国产替代

用友BIP

国产替代

Nginx常用配置及和基本功能讲解

京东科技开发者

nginx 负载均衡 正向代理与反向代理 企业号 4 月 PK 榜 Nginx入门

MIT 研究人员发现ImageNet数据集存在系统级缺陷_AI&大模型_KHARI JOHNSON_InfoQ精选文章