写点什么

微软图灵通用语言表示模型 T-ULRv2 位居 XTREME 排行榜榜首

  • 2020-12-26
  • 本文字数:2295 字

    阅读完需:约 8 分钟

微软图灵通用语言表示模型 T-ULRv2 位居 XTREME 排行榜榜首

今天,我们很高兴地宣布,图灵多语言模型(Turing multilingual language model,T-ULRv2)目前位居 Google XTREME 公共排行榜榜首。该模型是由 Microsoft 图灵团队与 Microsoft Research 合作开发的,该模型的平均得分高出阿里巴巴(VECO)之前的最好成绩 3.5 分。为了实现这一点,除了预训练模型之外,我们还使用了“StableTune”,这是一种基于稳定性训练的新型多语言微调技术。排行榜上的其他模型包括 XLM-R、 mBERT、XLM 等。以前最好的提交之一也是来自 Microsoft 使用 FILTER 提交的。



通用语言表示


Microsoft 图灵团队长期以来,一直认为语言表示应该是通用的。在这篇发表于 2018 年的论文 中,我们提出了一种以无监督方式训练语言不可知表示的方法。这种方法允许用一种语言对训练过的模型进行微调,并以零样本学习的方式应用于另一种语言。这将克服要求标签数据以每种语言训练模型的挑战。自从这篇论文发表以来,无监督的预训练语言建模已成为所有自然语言处理模型的支柱,而基于 Transformer 的模型是所有这类创新的核心。


作为 Microsoft 大型人工智能的一部分,图灵系列的自然语言模型一直在推动 Microsoft 产品中的下一代人工智能体验。图灵通用语言表示模型(T-ULRv2)是我们最新的跨语言创新,它结合了我们最近的创新 InfoXLM,从而创建了一个通用模型,在同一个向量空间中表示 94 种语言。在最近的一篇博文中,我们讨论了如何使用 T-ULR 对 Microsoft Bing(微软必应)的所有支持语言和地区的智能答案进行扩展。同样的模型也被用于扩展 Microsoft Word 语义搜索功能,使其扩展到英语之外,并为 Microsoft Outlook 和 Microsoft Team 提供回复建议。我们将很快向用户提供这些通用的体验。



Microsoft Bing 的西班牙语和阿拉伯语智能答案的示例,由 T-ULR 提供支持。



Microsoft Word 语义搜索的法语示例,由 T-ULR 提供支持。


这些真实的产品场景要求极高的质量,因此为我们的人工智能模型提供了完美的测试平台。结果,我们的大多数模型在自然语言处理任务的正确性和性能都接近最新水平。


XTREME 基准


多语言编码器的跨语言迁移评估(The C ross-lingual TR ansfer E valuation of M ultilingual E ncoders,XTREME)基准涵盖了跨越 12 个语系的 40 种不同类型的语言,其中包括 9 项任务,这些任务需要对不同级别的语法或语义进行推理。选择 XTREME 中的语言是为了最大限度地提高语言多样性、现有任务的覆盖率和训练数据的可用性。


XTREME 中包含的任务涵盖了一系列的范式,包括句子文本分类、结构化预测、句子检索和跨语言问答。因此,为了使模型在 XTREME 基准中获得成功,它们必须学习泛化到许多标准跨语言迁移设置的表示。


有关基准测试、语言和任务的完整描述,请参阅《XTREME:用于评估跨语言泛化的大规模多语言多任务基准》(XTREME: A Massively Multilingual Multi-task Benchmark for Evaluating Cross-lingual Generalization.


T-ULRv2:数据、架构和预训练


图灵通用语言表示(T-ULRv2)是一种具有 24 个层和 1024 个隐状态的 Transformer 架构,共有 5.5 亿个参数。T-ULRv2 预训练有三个不同的任务:多语言屏蔽语言建模(multilingual masked language modeling,MMLM)、翻译语言建模(translation language modeling,TLM)和跨语言对比(cross-lingual contrast,XLCo)。MMLM 任务(又称为 Cloze 任务)的目标是从不同语言的输入预测被屏蔽的标记。T-URLv2 使用一个由 94 种语言组成的网络多语言数据库进行 MMLM 任务训练。与 MMLM 一样,TLM 任务也是预测被屏蔽的标记,但预测是受到以串联的翻译对的限制。例如,给定一对英语和法语的句子,模型可以通过关注周围的英语标记或其法语翻译来预测被屏蔽的英语标记。这有助于模型对齐不同语言中的表示。



XLCo 还使用了并行训练数据。任务的目标是最大化平行句表示之间的互信息。与 MMLM 和 TLM 中的最大化令牌序列互信息不同,XLCo 的目的是跨语言序列级的互信息。在 TLM 和 XLCo 任务中,T-URLv2 都使用 14 个语言对的翻译并行数据。


XLCo 的损失函数如下:



随后将其添加到 MMLM 和 TLM 损失中,以获得跨语言预训练的总体损失:



T-ULRv2 发布信息


在 Microsoft Ignite 2020 上,我们宣布图灵模型将可用于构建自定义应用程序,作为私人预览的一部分。T-ULRv2 也将成为该计划的一部分。如果你有兴趣了解更多关于此图灵模型和其他图灵模型的更多信息,可以给我们提交申请。我们正在与 Azure 认知服务(Azure Cognitive Services)密切合作,使用图灵模型为当前和未来的语言服务提供支持。现有的 Azure 认知服务客户将通过 API 自动从这些改进中受益。


让我们的人工智能体验民主化


在 Microsoft,全球化不仅仅是一个研究问题。这是一个我们必须正视的产品挑战。世界各地都有 Windows。Microsoft Office 和 Microsoft Bing 在 200 个地区有 100 多种语言版本。我们的客户遍布世界的每一个角落,他们以自己的母语来使用我们的产品。为了使我们的产品体验真正民主化,以赋予所有用户权利,并在全球范围内有效地扩展,我们正在推动多语言模型的边界。其结果是像 T-ULRv2 这样的与语言无关的表示形式可以改善所有语言的产品体验。


作者介绍


Saurabh Tiwary,是 Microsoft 副总裁兼杰出工程师。


周明博士,是微软亚洲研究院副院长、国际计算语言学协会(ACL)主席、中国计算机学会理事、中文信息技术专委会主任、术语工作委员会主任、中国中文信息学会常务理事、哈尔滨工业大学、天津大学、南开大学、山东大学等多所学校博士导师。


原文链接


https://www.microsoft.com/en-us/research/blog/microsoft-turing-universal-language-representation-model-t-ulrv2-tops-xtreme-leaderboard/


2020-12-26 14:001587

评论

发布
暂无评论
发现更多内容

Rainbond v5.17 版本发布,统一管理离线镜像和私有仓库

北京好雨科技有限公司

Kubernetes 云原生 容器云 离线

Linux 中常见目录的作用

emanjusaka

Linux 目录

弹性调度助力企业灵活应对业务变化,高效管理云上资源

阿里巴巴云原生

阿里云 云原生 弹性计算

云消息队列 Kafka 版阿里云 SAE 2.0 正式商用:极简易用、百毫秒弹性效率,降本 40%生态谈第一期:无代码转储能力介绍

阿里巴巴云原生

阿里云 Serverless 云原生

秒速出图!体验 TensorRT 加速 Stable Diffusion 图像创作

阿里巴巴云原生

阿里云 云原生

Jira 母公司全面停服 Server 产品,用户如何迁移至极狐GitLab

极狐GitLab

推荐收藏 | 【Git实战专题】「必坑宝典」带你深入剖析Git操作指令下的奥秘原理和运作机制

洛神灬殇

Java git 原理分析 后端处理 2024年第十八篇文章

文心一言 VS 讯飞星火 VS chatgpt (184)-- 算法导论13.5 1题

福大大架构师每日一题

福大大架构师每日一题

为什么人工智能与软件测试的结合话题开始火爆

测试人

软件测试 自动化测试 测试开发

十家传统企业数字化转型的心得体会:10大关键方面、拆解74 小点

天津汇柏科技有限公司

数字化转型

从内核的视角观测容器——SysOM 容器监控

阿里巴巴云原生

阿里云 云原生 容器服务

恭喜 Nacos 和 Sentinel 荣获 2023 开源创新榜“优秀开源项目”

阿里巴巴云原生

阿里云 云原生

【2024开年必备】最全面的Macbook/苹果电脑必备实用软件推荐

Rose

苹果软件 装机必备 Mac应用

【Mac&win】datagrip2023安装教程与激活码分享 亲测有效

Rose

ide DataGrip2023激活 DataGrip2023安装

顺丰科技LaaS实现产品化,数字生态战略提速

新消费日报

如何使用 Helm 在 K8s 上集成 Prometheus 和 Grafana|Part 3

SEAL安全

Kubernetes Helm Grafana

XMind 2024思维导图:新增 310 张 AI 原创插画

Rose

XMind 2024思维导图 XMind 2024下载 XMind 2024中文 思维导图下载

基础架构即代码 | 亚马逊如何在现实生活中实践 DevOps

亚马逊云科技 (Amazon Web Services)

DevOps 微服务 架构设计 Amazon Lambda Amazon API Gateway

魔搭×函数计算:一键部署,缩短大模型选型到生产的距离

阿里巴巴云原生

阿里云 云原生

Led显示屏同步和异步控制的原理是什么

Dylan

控制 LED显示屏 全彩LED显示屏 led显示屏厂家

DvD刻录软件DVD Cloner 2024 for Mac,现已支持最新的蓝光电影复制

Rose

mac软件下载 DVD克隆 DVD Cloner 2024下载 DVD Cloner 2024 Mac

面试官:Redis持久化能关吗?怎么关?

王磊

Java 面试题

一些无人不知的命名规范

小魏写代码

Spark SQL五大关联策略

京东科技开发者

速看,速进。一起学习一起交流。

薛定谔的皮皮虾

荣耀时刻 | 第七在线荣获艾媒2023中国企业服务年度企业

第七在线

阿里云 ACK One Serverless Argo 助力深势科技构建高效任务平台

阿里巴巴云原生

阿里云 云原生

画眉(京东科技设计稿转代码平台)介绍

京东科技开发者

texifier mac LaTeX编辑工具下载安装(原Texpad)

Rose

Mac软件 LaTeX 编辑器 Texpad Texifier激活码

可观测实践丨如何利用 AI 算法解决告警配置三大难题?

阿里巴巴云原生

阿里云 云原生 可观测

微软图灵通用语言表示模型 T-ULRv2 位居 XTREME 排行榜榜首_软件工程_周明_InfoQ精选文章